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Airy-type asymptotic representations of a class of special functions are considered from
a numerical point of view. It is well known that the evaluation of the coefficients of the
asymptotic series near the transition point is a difficult problem. We discuss two methods
for computing the asymptotic series. One method is based on expanding the coefficients
of the asymptotic series in Maclaurin series. In the second method we consider auxiliary
functions that can be computed more efficiently than the coefficients in the first method,
and we do not need the tabulation of many coefficients. The methods are quite general,
but the paper concentrates on Bessel functions, in particular on the differential equation of
the Bessel functions, which has a turning point character when order and argument of the
Bessel functions are equal.
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1. Introduction

Writing efficient algorithms for special functions may become problematic when
several large parameters are involved. In particular problems arise when functions sud-
denly change their behaviour, say from monotonic to oscillatory behaviour. For many
special functions of mathematical physics powerful uniform asymptotic expansions are
available, which describe precisely how the functions behave, which are valid for large
domains of the parameters, and which provide tools for designing high-performance
computational algorithms. An important class concerns the functions having a turn-
ing point in their defining differential equation, in which case Airy-type expansions
arise.

Airy functions are solutions of the differential equation

2w

= (1.1)

[=9)
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Two linearly independent solutions that are real for real values of z are denoted by
Ai(z) and Bi(z). Equation (1.1) is the simplest second order linear differential equation
that has a simple turning point (at z = 0). More general turning point equations have
the standard from

2w _

3z = vl (12)

and the problem is to find an asymptotic approximation of w(() for large values of u,
that holds uniformly in a neighborhood of ¢ = 0. A first approximation is obtained
by neglecting ¥(¢), which gives the solutions

Ai(u?3¢),  Bi(u?3¢).

For a detailed discussion of this kind of problems we refer to [7, chapter 11].
Many physical problems and special functions can be transformed into the standard
form (1.2). Examples are Bessel functions, Whittaker functions, the classical orthog-
onal polynomials (in particular Hermite and Laguerre polynomials), and parabolic
cylinder functions. The existing uniform expansions for all these functions are pow-
erful in an analytic sense. In several cases rigorous and realistic bounds are given for
the remainders of the expansions; cf. [7].

From a computational point of view the uniform character of the expansions
causes a difficulty. This is mainly due to the complexity of the coefficients in the
expansions. In all known cases the coefficients are difficult to compute in the neigh-
borhood of the turning point. Usually this point is of special interest in the algorithms,
since many other methods fail in the turning point area when the parameters are large.
In [2] uniform Airy-type expansions are used for the evaluation of Bessel functions.
Matviyenko [5] discusses the implementation of several kinds of asymptotic expansions
of the Bessel functions. However, Matviyenko does not use Airy-type expansions. For
the turning point region he proposes numerical quadrature for the Sommerfeld integral
of the Hankel functions, after selecting contours of steepest descents. It is of interest to
compare the algorithms of Amos and Matviyenko with our algorithms, but we expect
to return to this in future publications, when we also want to consider the modified
Bessel functions with purely imaginary order (cf. [3] and [9]).

In this paper we discuss two methods for computing the asymptotic series. One
method is based on expanding the coefficients in the series into Maclaurin series. We
show how to obtain the coefficients of the Maclaurin series for the coefficients of
the asymptotic series. In the second method we consider auxiliary functions that can
be computed more efficiently than the coefficients in the first method; in addition,
we do not need the tabulation of many coefficients. In fact we consider differential
equations for functions representing (in an exact sense) the asymptotic series, and we

base a numerical algorithm directly on these differential equations. Extra features of
the second method are:

e we deal with convergent expansions;

¢ we need only a small number of pre-computed tabulated numbers;
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e the method is applicable for quite small values of the large parameter.

In some sense this method is similar to the one described for the computation of incom-
plete gamma functions in [8]. In that case the error function is the main approximant.

The methods described in this paper are quite general, but we only treat the case
of Bessel functions, by using the differential equation of the Bessel functions, which
has a turning point character when order and argument of the Bessel functions are
equal.

In the following section we summarize the Airy-type expansions for the Bessel
functions and their derivatives. In section 3 we describe the method of obtaining
Maclaurin series expansions for the coefficients in the expansions. In section 4 we
describe a second method based on an iteration scheme to compute auxiliary functions
that replace the asymptotic series. In a final section we give details of numerical

experiments.
2. Airy-type asymptotics of ordinary Bessel functions

The ordinary Bessel functions J, () and Y},(z) can be expanded in terms of Airy
functions. From [1, p. 368] and [7, p. 425] we obtain the following results,

Juw) = S [ (25) 4,0 + v BAT () BQ),
(2.1)
way=~%%&Mﬂ”QAAo+V4“m%ﬂﬁQonL
where
> as(( > bs(C
A~ 5 B~ 5 22)

s=0 s=0
as v — oo, uniformly with respect to z € [0, 00). The expansions are valid for complex

values of v and z, but here we concentrate on real values of the parameters.
The parameter ( is defined by

JI =2
_3_4'3/2:}“.1__{_.__1___25__\/1_22’ 0<Z<1, (23)
z
1
%(—C)3/2=\/zz-—1 — arccos —, z>1.

Furthermore,

1/4
¢(<>=< s ) 60 =2/, @.4)

1—22

The first coefficients ag, bs are

ao(Q) =1, bo(() = + T2

B ¢2<o[5 3}
48C2 " 48¢ '
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Higher coefficients follow from the representations

2s
a5 =" (" Puzs (D)

k=0
2s+1 25
bs(Q)=—C2 > " M Puger1k(®),
k=0
where t = 1/v/1—2%, My =po =1,
2k + )2k +3) - (6k — 1) 6k + 1
A = : = - Mo k=1,2,3,.... 26
k KI(144)F M= k17" 20
The quantities uy, are given by
1 t
ups1(t) = 32 (1 — ) uj@® + g/ (1 -5 u(r)dr, k=0,1,2,..., 27
0

with ug(t) = 1.
Asymptotic representations for the Hankel functions follow from the relations

HO(2) = J,(2) + iYy(z),  HP(2) = J(2) — iYy(2),
and
Ai(2) + iBi(2) = 26"/ Ai(2e ™), Ai(e) — iBi(2) = 267"/ Ai (2e”™/3).

This gives representations for the Hankel functions with the same structure as for the
ordinary Bessel functions, with the same functions A,((), B.(().

2.1. Representations for the derivatives

For the derivatives we have (cf. [1, p. 369])
Jhw2)= - [v P Ai(*3¢) () + v AT (V30) D),

~ 2.8
Yi(wz)= (O [v*PBi(V¥3¢) 0O + v 2B (v¥3¢) Du(©)], @9
where
S 9, 2
WO =-540 =5
Cu(O) = x(OAQ) + 4,(0) + (B,
(2.9)

Dy ()= Au(Q) + v 2 (O)B.() + v B,

LSO - 20N
MO=30 ="

Primes denote differentiation with respect to (.
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The functions C,({), D,(z) have the expansions

CO~ Y C,jii . DO~ -d;%, (2.10)
s=0 s=0

/here

¢s(§) = x(Qas(Q) + a5({) + ¢bs(Q),

, (2.11)
ds(Q) = as({) + x(Obs-1({) + bs_1(0)-
‘he first coefficients cg, dg are
_ 1, #Q 7
CO(C)——48C+4—8‘ 9—1_22, do(¢) = 1.
ligher coefficients follow from the representations
2s+1
cs(Q) = _41/2 Z ﬂkc—%/zv2s+l—k(t):
k=0 2.12)

2s
ds(Q)=>_ MC e i (1),

k=0
vhere t, \y and pk are as in (2.5)—(2.7), and the quantities v can be expressed in
2rms of the uy of (2.7):

uk(t) = up(®) + t(8 = 1) [ug—1(®) + tuj_ ], k=1,2,...,

vith vo(t) = 1.

Explicit representations of a}(¢), bl(c) can be obtained by differentiating the
elations in (2.5), but they also follow from the representations for ag, bs, cs,ds and
rom (2.11): ’

al(Q) = ¢s(() — x(Oas({) — ¢bs(Q),

(2.13)
bs({) = ds+1(Q) — as+1(¢) = X(Obs(Q)-
A recursive scheme for evaluating as, bs is given by
a3 (§) +2Cby(Q) + bs($) — H(Qas () =0, 010
20441(0) + 55(0) = %()bs(O) =0,
vhere a¢({) =1 and
5 (22 +4) (2.15)

VO=t6z Y a1
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The coefficients ag, bs, ¢s, ds in (2.2) and (2.10) are complicated expressions. Explicit
representations are given in (2.5) and (2.12) in terms of the coefficients u; of Debye-
type asymptotic expansions. However, these expressions are difficult to compute near
the turning point z = 1, or equivalently, near ¢ = 0. In [2] all needed coefficients
as, bs are expanded in Maclaurin series at the turning point, the Maclaurin series being
in terms of the variable w? = 1 — 2.

2.2. Further properties of the functions A,, By, Cy,, D,

Using the Wronskian relation for the Airy functions, viz.

Ai(2)Bi(2) — A'(2)Bi(z) = ;1; (2.16)
we can invert the relations in (2.1) and obtain
1/3
AL = [ w2)Bi (3¢) + Y (va)Al (1¥3¢0)],
<Z5(C)5/3 2.17)
B/(O)= —%’@— [T w2)Bi(*3¢) + Yy (w2)Ai (v¥/3¢)].

The functions A,(¢) and B, (() are the ‘slowly varying’ parts in the representations in
2.1).

Olver’s approach for deriving Airy-type expansions for the Bessel functions is
based on the differential equation

2w
d¢?
where 1(() is given in (2.15). This differential equation is obtained from the well-
known Bessel equation by using a Liouville-Green transformation; see [7, p. 420].
The quantities within the square brackets in (2.1) are two solutions of equation (2.18).

By using equation (2.18), we can derive the following system of differential
equations for the functions A,((), B, ({):

A" +2(B'+ B —(()A=0,
B" + 22 A" — (()B =0,

= LA+ UQIW, (2.18)

(2.19)
where primes denote differentiation with respect to ¢. To verify this we write equation
(2.18) in the operator form LW () = 0. Applying L to

W(Q) = Ai(V*Q) AQ) + v/ Al (V3¢) B, (),
we find

LWQO = Ai(VC) [AUQ) + 2(BL(C) + Bo(Q) — H(OALQ)]
+ v BAT (V30) [BUC) + 22440 — W(OBLO],  (2.20)
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where we have used the differential equation of the Airy functions; cf. (1.1). Because
L:W(() =0, the quantities within square brackets in (2.20) must vanish.

A Wronskian for the system (2.19) follows by eliminating the terms with ¥(().
This gives

A"B—B"A+B*+2(B'B-22A'A=0,
which can be integrated:
VAL + AQOBLO) = AOBLC) — ¢BXQ) = 2. 2.21)

The constant on the right-hand side follows by taking ¢ = 0 and from information
given later in this section.

By using the Wronskian relation for the Bessel functions:

2
Ju(2)Y(2) — T, ()Y, (2) = — (2.22)
it follows that A,, B,, C,, D, are related in the following way:
A(O)D) = v BLCWQ) = 1. (2.23)

By substituting C,(¢), D,({) of (2.9) into (2.23) we again obtain (2.21).

The system in (2.19) is equivalent to a (4 by 4)-system of first order equations,
admitting four independent solutions. The solution { A, A’, B, B’} that we need satisfies
initial conditions at, say, ¢ = 0. Exact initial values of A, A, B, B' at { = 0 can be
obtained from (2.1). They involve values of the Airy functions (and the derivatives
thereof) at the origin, and J,(v), J,(v), Y, (v), Y, (v). In a numerical scheme for solving
the system (2.19) these initial values are needed, up to a certain accuracy.

2.3. Values of the coefficients at the turning point

It is convenient to collect some information from the literature on the initial
values at the turning point { = 0,z = 1 of system (2.19), because these values give
insight in recursion relations discussed later. From [1, p. 368] we obtain

T, W) =v~ P2 PA0)SW) + v 2P AT O)T W),
Y, () = —v~3213Bi(0)S(v) — v=/32%3BY (0)T (v),
J\ ()= —v PRBATOU®W) — v 432 B A0V (),
Y () =v 32 PBI(OU W) + v 22 *Bi(O)V (v),

in which S, 7", U, V denote functions having the following asymptotic expansions:

(2.24)

o
S) ~ ;—2%,

n=0

o0 /8
n _ 1 g __ 113
T'(v)~ E on’ Bo = 75 B = —137%0°
=0

1
ap =1, a) = — 53,
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(o]
g 23
U(V)NZ;‘Z%, Y0 =1, 1 = 3755

n=0

(2.25)
= bn 1 947
V)~ Z;z’ﬁ bo = 5, 61 = — 358500~
n=0
From the Wronskian in (2.22) it follows that
TV ) =V [SWU®E) - 1]. (2.26)

The function (C) defined in (2.4) has expansion ¢(¢) = 2173 + +¢ + O((?). It
follows from (2.1), (2.8) and (2.22) that

A,0) = S(v), A0 =27 V) - Lsw)].

(2.27)
B,©0)=2"°Tw),  BL0) =-1Tw)+ 1 [Uw) - SW)].

It is easily verified that A’ (0) = O(v~?), B.(0) = 2%—5 +0(v72), as v — oco. Observe
that leading terms in V(v) — %S(u) and U(v) — S(v) cancel each other.

3. Expansions of the coefficients

Our purpose is to describe an algorithm for computing the Bessel functions
J,(v2), Y, (vz) and their derivatives in the neighborhood of the turning point z = 1 for
large values of the parameter v. The powerful Airy-type expansions can be used for
this purpose. We do not consider the evaluation of the Airy functions here, because
several algorithms are available for these functions; see the overview in [4].

We concentrate on the evaluation of the functions A,, By, C,,, D, introduced in
section 2 for ( near the origin, say for || < 1. For real values of ( this gives an
interval in the z-domain around z = 1, that is, [0.39, 1.98]. A straightforward method
is based on using Maclaurin series expansions of the quantities involved in powers
of (.

The singular points of the functions 2({), ¥((), ¢(C), $(C), x(¢) and those of the
coefficients of the asymptotic expansions occur at

C:]: — (%71_)2/36:&1:7(’/3 (3.1)
(see [7, p. 421]). These points correspond with the z = eTi™. It follows that the
radius of convergence of the Maclaurin series of these quantities equals 2.81.... In

this section we give the expansions and mention the values of the early coefficients.
It is convenient to start with an expansion of z in powers of (. We obtain

from (2.3)
d 2
= (1-2)(%)
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Table 1
First terms of the Maclaurin expansions of the functions z({), ¥(¢), ¢(<),$((), x(C); the para-
meter 7 is given by n = 27!/3¢.

A= Yoz =[1=n+ 37 + %7 — g+,

VO = 223 ™ =25+ Fm+ 50’ - B - et o],
¢ = 25 (unt =21+ i+ FHn' - B — ]
$(C)= 22/3200 $nn" =22/3[1+§n+%n2+%n3+%ﬁ%n‘+--~],

n=0

— o=l/3 no_ oa=1/3[1 4 2. _ 6 2 _ 34 3 113648
XQ= 275 xan” = 2 [5 + 551 = 5e57 — T+ o o]

and substitute z =1+ 2 + ---. This gives z% = —1/2. Using the relations in (2.3)
we obtain the correct branch: z; = —271/3. We write

¢ =23, (3.2)

and we obtain in a straightforward way the expansions shown in table 1.
Next we consider the coefficients as, bs that occur in (2.2). We expand

as(Q) =Y aln’,  bs(Q)=2"3 b, (3.3)
t=0 t=0

where 7 is given in (3.2). The coefficients af, b} are rational numbers. We know that
ao(¢) = 1. Substituting the expansions in (2.14) we can obtain recursion relations for
the coefficients af, b%. It follows that

t
202t + Dbt =2 pal™" — (¢ + 1t +2)atT?,
S S

= (3.4)
2t + Dabt) =2 bl — (¢ + 1)t + 2657,
r=0
The relations are used for fixed s > 0, while t = 0,1,2,.... When s = 0 the first

relation gives b= /2t+1),t=0,1,2,.... We observe that the second relation
does not give a value for a‘f. The same problem occurs for all values of s.

To find aQ we can use (2.21). By substituting the expansions of (2.2), it follows
that for s =0,1,2,...

s+1 ]

S ar(Qass1-r(Q) + 3 [arObe-r(Q) = @HObs—+(O) = B Obs-r (O] = 0. (3-5)
r=0

r=0
Putting ¢ = 0 yields

S

S
20, =— alady .-y [adbs, — altl], s=012.... (6

r=1 r=0
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Table 2
First terms of the Maclaurin expansions of the coefficients as(¢),bs({);
cf. (3.3); the parameter 7 is given by n = 2“/34.

a() =1,

a1(Q) = — 55 — " + ﬁ%f%nz + %ﬂ%’f + Tt to

020) = Tigmenn + TaeEmT — THssswN’ — BongT T
a3(C) = ~ mousaarasam — Tomamsemsm” T

bo({) = 2‘/3[% + N+ o’ — B — e+ ]

bi(Q) = 2" - i — N — pa + Tamam + ]
)= 2 RS A + AR .
= 2 - R AR+ .

In this way we obtain the expansions shown in table 2. Expansions for the coef-
ficients cs, ds are not really needed, because these quantities follow from the relations
in (2.11), if expansions for the functions in the right-hand sides of (2.11) are available.

3.1. Numerical experiments

We have used the expansions in (3.3) for |¢| < 1 for obtaining values of as(¢)/v%,
bs(€)/v¥5+4/3 for s = 0,1,2,...,5 with absolute accuracy of 10720 if v > 100. We
have used the series in (3.3) with terms up to ¢ = 45 — 6s. The evaluated series
in (3.3) and those of the derivatives have been used to check the Wronskian relation
in (2.21) for a set of values of ¢ on the unit circle. The results are shown in the third
column of table 3. The same errors have been obtained by calculating the quantities
in (2.21) by using the explicit representations in (2.5), and those of the derivatives by
using (2.12) and (2.13).

In the fourth column the relative errors in by(¢) are shown, where we compared
values of by((¢) obtained by using explicit representations and by using the Maclaurin
expansions. In the final column we give the results for a;(¢). The results for bo(¢)
and a;(¢) are accurate enough for use in (2.1) and (2.2) in order to obtain about 20
decimal digits accuracy on the unit circle in the (-plane for J,,Y,. Also in the higher
order coefficients bg(¢) and as4+1(¢), s > 1, less accuracy is needed because of the
negative powers of v in the series in (2.2).

We have computed the explicit representations of as((), bs(¢) by using the com-
puter algebra facilities of Maple. To obtain numerical values we have computed the
quantities with the Maple parameter Digits set equal to 20. In this way we expected
to have a fair comparison with the Maclaurin expansions, although it is quite easy to
obtain higher accuracy in Maple by setting Digits equal to larger values. Also, the
coefficients used in the Maclaurin expansions (3.3) are converted to 20 decimal digits
in the computations.
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Table 3
Relative errors of the relation (2.21) for values of ¢ on the upper part
of the unit circle, { = €™ /! by comparing the results obtained by
using the explicit representations in (2.5) and the expansions (3.3). In
the fourth column the relative errors of by(¢) obtained by both methods
are shown; the same for a,(¢) in the final column.

n  @=nw/16 erorin (2.21) errorin bo(¢) error in a1(¢)
0 Or/16  0.14x 107 054 x107'* 045x 107"
1 Ir/16 071 x107%® 084 x 107" 0.10x 1076
2 2r/16 064 x 107 024 x 107% 041 x 107"
3 3r/16 023 x107%  090x 107" 0.56x%x 10°"
4 4r/16  020x 107"  022x 107 Q.12 x 1076
5 5t/16 051 x 107  085x107'® 0.18 x 1076
6 6w/16 026 x 107% 039 x 107" 0.17x107%
7 7r/16 013 x 107 054 x 107" 018 x 10716
8 8r/16  028x107®  059x 107" 0.19x 107
9 9r/16 026 x 1072  0.55x 10™'* 023 x 107'¢
10  10m/16  0.14x 107" 058x107%® 022x 10716
11 11r/16 047 x 107 089 x 107"* 032 x 1076
12 12x/16 033 x107%  0.11x 1077 023x 107
13 137/16  020x 107" 047 x107'* 030x 107'
14 147/16  0.12x 1073  029x10™"® 033 x 107"
15  157/16  020x 107" 098 x 107" 032x 107"
16  167/16 090 x 107  092x 107" 035x107'

We conclude from these experiments that, for checking the Wronskian relation
in (2.21) with the required precision of 20 decimal digits, and for real values of v larger
than 100, we can use the boundary of the unit disk in the {-plane to decide about using
Maclaurin expansions of the coefficients ag, bs or their explicit representations.

Exact values of the coefficients needed in this algorithm (the first few values are
shown in tables 1 and 2) are available from the author upon request.

4. Evaluation of the functions A,({), B,({) by iteration

We now concentrate on solving the system of differential equations in (2.19) by
using analytical techniques. Instead of expanding the coefficients as, bs of the asymp-
totic series we expand the functions A, (), B,(¢) in Maclaurin series. As remarked

earlier, the singular points of these functions occur at (* = (%w)z/ 3exim/3, and the
radius of convergence of the series of 4,(¢) and B, () in powers of ( equals 2.81....
We expand

A0 =S Fa)™  BUO =D g0 WO =D (" &D
n=0

n=0 n=0
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The coefficients fo, f1,...,90,91,. .. are to be determined, with the first elements
given in (2.27), while the coefficients h,, are known. The first few h,, follow from (3.2)
and table 1:

— 191/3 2 _ 69 ~2/3 _ 148 ~1/3
ho = 762 ' hi =%, hy = ras 2 3= Hs2

Upon substituting the expansions into (2.19), we obtain for n = 0, 1, 2, . . . the recursion
relations

n
42D+ D2 +Cn+ Dgn=pn,  pn= Y hifaks
=0 4.2)
N+ 2+ Dgng2 + 220+ Dfpg1 = 0ns 00 =D hignk-
k=0

We have already observed that cancellation occurs in the representations in (2.27). All
evaluations based on the above recursions for computing higher coefficients fy,, gn from
lower coefficients suffer from cancellations. That is, the recursion relations cannot be
used in the forward direction. In particular when v is large the recursions in (4.2) are
not stable in the forward direction.

To show what happens, we give a few details on the first recursion. Take n = 0,
then we obtain, using fo = A,(0), go = B,(0) and (2.27),

2f» = foho — go = 2'3[LS() — TW)],
29, = goho — 2V f1 = 2**[LT(w) = v {V(v) - 1Sw)}].

We see from (2.25) that f, = O(v™2), go = O(1), as v — oo, whereas the quantities
used to compute f, are of order O(1). Also, the term with V% in g» is of lower order
in the final result. Further use of the recursion makes things worse. In fact, in further
steps more and more early terms in the asymptotic expansions of combinations of
Sw), T(v), U(v) and V (V) are subtracted.

This unstable pulling down of asymptotic series suggests to use the recursion in
(4.2) in the backward direction. When we try to use (4.2) in the backward direction,
for instance with false starting values fx, gy for some large integer IV, a complication
arises because of the terms p,, o, on the right-hand sides of (4.2). All terms p,, o,
contain fi, gx for k =0,1,2,...,n. Hence, recursion in the backward direction is not
possible at all. A way out is to consider p,, o, as known quantities, and to treat (4.2)
as inhomogeneous difference equations.

4.1. Solving (2.19) by iteration

A first step in this approach will be to solve the system (2.19) by iteration. That
is, we choose an appropriate pair of functions Fj, Go, and define two sequences of
functions {Fy,}, {Gm} by writing for m =1,2,3,...:

Fl+2G, 4+ Gm =9((Fm-1, G+ 202F, =9()Gm_1.  (43)
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To study this iterative process we need to know the solutions of the homogeneous
equations, that is, of the system

F +2(Gy, + Gm =0,
. 5 (4.4)
G+ 20°F,, =0.

One solution is F' = 1, G = 0. Other solutions of (4.4) follow by eliminating F” in
the first equation by differentiating the second one. The result is

G/II _ 4V2CG, _ 21/2G =0, (45)
with solutions products of Airy functions (see [1, p. 448)):
A¥(t),  Ai@®BI(t),  Bifw),  t= 1% (4.6)

The F-solutions of the homogeneous equations (4.4) follow from integrating the sec-
ond line in (4.4). Knowing these four linearly independent solutions we can construct
solutions F', G of the inhomogeneous equations corresponding to (4.4), that is, the sys-
tem (2.19), by using the variation of constants formula, and eventually by constructing
Volterra integral equations defining the solutions A, B of (2.19). For details we refer
to section 4.3 below.

4.2. Solving (4.3) by backward recursion

We rewrite (4.2) in backward form:

1
fn= 77 [Lon_1 = (n+ Dgnyi]s

1
2n —1
where n > 1. The coefficients are assumed to belong to the functions Fi,(¢), Gm(¢) of
the iteration process described by (4.3), while the coefficients p,_1, 0,1 are assumed
to be known, and contain Maclaurin coefficients of F,_1({), Gm-1(¢) and 9({).

Observe that (4.7) does not define fy. After having computed fi, f2,..., 90,91, 92 - - -
by the backward recursion process, we compute fo from the Wronskian (2.21):

@.7)

Gn-1= [Pn-1 = n(n + Dfns1]s

—-g1+ \/g% + 4v2(v2 + f1go0)
fo= 3 , (4.8)
2v°

where the +sign of the square root is taken because of the known behaviour of F,(0)

when v is large; see (2.27). '
We give a few steps in the iteration and backward recursion process. Let us
start the iterations (4.3) with constant (Fp, Gp) (constant with respect to ¢ and v). _The
obvious constant choice of (Fy, Go) is (1, ho); see (2.27). We use the four coefficients
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of 1 (¢) shown after (4.1) for constructing the p and o coefficients in the right-hand
sides of (4.7). We have

pn‘_"hn’ U’n:h()hm n=071a2?37 Pn=0n=0, n>4

Then the first iteration gives

fa = thohav™?, 93 = 3ha,
f3 = thohav 2, g2 = ha — f5hohav %, (4.9)
fo = (Yo — 20> g1 = s — dhabar,

fi= %(h% - %—hz + %hohy/—z)l/‘z, go=ho — (%hohl - %h3)l/—2,

while fq is computed by using (4.8). Expanding the result for fo we find

1
fo=1-zv+0(v 9
which agrees with the first two terms of the asymptotic expansion of T'(v) given in
(2.25). Also, the first terms of the asymptotic expansions of go, f1,91 agree with the
first terms of the expansions following from (2.25) and (2.27). When more coefficients
hi and more iterations are used, the further iterates Fy,, Gy, have Maclaurin coefficients
frn>gn of which the asymptotic expansions with respect to v are converging to the
actual asymptotic expansions of f,,gn. In particular, the asymptotic expansions of
fo, go coincide more and more with those following from (2.27). Of course, it is
not our goal to obtain the asymptotic expansions of the coefficients fn, gn, but this
illustrates the analytical nature of the algorithm.

The numerical problem in using the recursions in (4.2) in the forward direction is
the influence of dominant solutions of the homogeneous equations of (4.2) (that is, the
equations obtained by taking p, = o, = 0). The dominant solutions are the Maclaurin
coefficients of the functions given in (4.6), as functions of (. The coefficients grow
as v becomes large. The minimal solution is given by fy =1 and fr4) = gn =0,
n > 0. From the above observations we infer that the solutions of the inhomogeneous
equations (4.2) cannot contain dominant solutions of the homogeneous equations. This
explains the unstable character of the forward recursions based on (4.2) and the stable
character of the recursion based on the backward form in (4.7). More details on these
phenomena can be found in [11].

4.3. On the convergence of the iterations in (4.3)

To obtain a solution of the system (2.19), which we write in the form

F"+2¢G'+ G- ¢()F =0,
G" +2°F — ()G =0,

we introduced the iterations in (4.3). We can write this in matrix form



N.M. Temme / Numerical algorithms for uniform Airy-type asymptotic expansions 221

¥ =AWy + By,
Ym()=AQym(©) + B(ym-1({),

where m =1,2,3,... and

F 00 1 0
_|c oo o 1
V 00 -2 0

0 0 00

[ o 0o 0o

0 % 00

and F/ =U,G =V.

We take (o € R and ®(() as a fundamental matrix of the system y'({) = A()y({),
i.e., the columns of the matrix are composed of linearly independent solutions of the
homogeneous equation y'(¢) = A()y({), with ®({o) = I4. As we remarked earlier (cf.
(4.5), (4.6)), we can indeed find these solutions, and because the solutions are linearly
independent and analytic, it follows that ®(() is invertible in C and that ®~!({) has
the same regularity as ®({). Applying the variation of constants formula, we find

¢
Y(Q) = DOy(Co) + V() /4 o~ () Bltyy(t) dt,

¢
¥m(©) = Dy (C0) + D) /C O (&) B(t)ym1 () dt.
So, if we take ym(Co) = ¥(C0),

¢
Ym(C) — y(Q) = P(Q)ym(Co) + P(C) /C o~ (O)B(t) [ym-1(t) — y(@)) dt.

We consider a matrix norm |- | in Cy; let || - || be its subordinated matrix norm, and
let o > (p. We are going to prove that y,,, — y for ¢ € [{o, @]. Take, for ¢ € [(p, ],
M =sup (@), [@" ).

P=sup B,

p=sup {|y1(0) — y({)|}-
Then

¢
[92(O) — Q)| < M2P /C lyi() — ()| ds < pM>P(C — Co)
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¢ ¢
143(0) — 9(O)| < M2P /( lya(s) — (s)| ds < pM>PMP /C (s — () ds

RY
Continuing this procedure, we finally obtain

_ et

lym(Q) = y(Q)] < s €

which tends to zero as m — co. The proof for a < (o, ¢ € [e, (o] and for complex
values of (, g is similar.

4.4. Numerical experiments

For numerical applications information is needed about the growth of the coeffi-
cients fy, gn. Since the Maclaurin series in (4.1) have a radius of convergence equal to
2.81..., for all values of v, the size of the coefficients f,, g, is comparable with that
of hy. It depends also on the size of |¢| how many coefficients f,, g, are needed in
(4.1). When |¢]| =1 we need about 45 terms in the Maclaurin series in (4.1) in order
to obtain an accuracy of about 20 decimal digits. The (-interval [—1, 1] corresponds
to the z-interval [0.39,1.98]. When z is outside this interval many other efficient
algorithms are available for the computation of J,(vz), Y, (vz).

We have computed successive iterates of Maclaurin coefficients f,, g, defined in
(4.1) for different values of v. To give the algorithm some relevant starting values we
have used approximations for fo, gy based on (2.27), with a few terms of S(v), T(v)
of (2.25). Furthermore we have taken g, = h,/(2n + 1), n > 1, which choice is
based on taking A =1 in the first line of (2.19), and integrating the resulting relation
(VCBY = 4/2V0).

During each iteration we start the backward recursions with f, = g,—; =0, n >
46, and we compute f4s, 944, fasa, gas, ... by using (4.4). We use hg, £k =0,1,...,45
and we recompute the coefficients pg, ok, k = 0,1,2,...,45, using (4.2) with values
fx, g obtained in the previous iteration. In table 4 we show the relative errors in
the values fo, go, fs, 95, f10, 910, when compared with more accurate values f§, etc.
Computations are done with extended precision (machine accuracy about 10~!°). The
accurate values are obtained by applying the backward recursion by using 10 iterations.
We also give the relative error in the Wronskian relation (2.21) at ¢ = 1 during each
iteration.

From table 4 we conclude that for » = 5 we can already obtain an accuracy of
1079 in the Wronskian after two iterations; further iterations improve the results. For
larger values of v the algorithm is very efficient.

Small values of v do not cause problems in the numerical algorithms published
in the literature. When using the above algorithm for computing the Bessel functions,
also the Airy functions and the functions ¢(¢) and ((z), all occurring in (2.1), are

S
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Table 4
Relative errors during five iterations () of fo, 90, f5, 95, f10, g1o compared with
more accurate values f, etc. The final column shows the relative error in the
Wronskian (2.21) at ¢ = 1.

i fo= 151 190~ g8l |fs = £81 lgs — 98 |fio = fial lgwo — g% Wronskian

v=>5

6.11e-09 1.76e-06 1.12¢-03 6.14e-04 3.38e-03 1.55e-03 4.36e-08
4.54e-12 1.03e-08 6.14e~06 8.33e-07 2.22e-05 4.42e-06 2.05e-10
2.56e-15 1.60e-11 1.52¢~08 8.48e-10 5.47e-08 8.24e-09 3.29e-13
1.21e-17 1.83e-14 6.40e~12 5.25e-13 1.86e-11 295e-11 6.72e-16
0.00e-00 4.19¢-17 4.64e-14 4.04e-16 2.58e~14 1.26e-14 2.23e-18

[ R N S R S R

v=10

4.24e-10 1.14e-07 2.90e-04 1.63e-04 8.92e-04 4.30e-04 2.76e-09
8.50e-14 8.17e-10 1.84e~06 5.76e-08 6.91e-06 3.16e-07 1.64e-11
1.45e-17 3.20e-13 1.10e-09 9.06e-11 4.27e-09 9.28e-10 6.64e-15
1.08e-19 9.89e-17 1.74e~12 1.25e-15 4.79e~12 6.87e-13 8.07e-18
0.00e-00 1.88e-19 1.35e~15 6.74e-17 1.58e~15 4.32e-16 3.44e-19

v W=

v=25

1.12e-11 2.94e-09 4.70e-05 2.66e-05 1.45e-04 7.09e-05 7.10e-11
3.66e-16 2.22e-11 3.09¢-07 1.52e-09 1.18e-06 8.44e-09 4.47e-13
0.00e-00 1.40e-15 2.95e~11 2.66e-12 1.17e-10 2.76e-11 2.91e-17
0.00e-00 0.00e-00 5.63e-14 7.25e-18 1.6le-13 3.17e-15 1.75e-19
0.00e-00 0.00e-00 6.45e-18 3.40e-19 8.67e-18 3.14e-18 1.76e-19

v =50

7.02e-13 1.84e-10 1.18e-05 6.66e-06 3.64e—05 1.78e-05 4.44e-12
5.75e-18 1.40e-12 7.79e-08 9.53e-11 2.97e-07 5.31e-10 2.82e-14
0.00e-00 2.2le-17 1.85e-12 1.69e-13 7.39e-12 1.76e-12 5.57e-19
0.00e-00 0.00e-00 3.63e-15 1.70e-19 1.05e-14 5.05e-17 1.26e~19
0.00e-00 0.00e-00 2.80e-19 0.00e-00 2.0le-19 8.94e-20 1.26e-19

WA W N

W H W=

needed. So the method based on the evaluation of A, (¢), B,(¢) may not be faster than
existing algorithms when v is less than 100, say.

5. Discussion and conclusions

We have described two methods for evaluating Airy-type asymptotic expansions
for the Bessel functions J,(vz), Y, (vz) (and for their derivatives) near the turning point
z = 1. For the Hankel functions the same methods are applicable.

The first method described in section 2 for evaluating the asymptotic series of the
Airy-type expansions requires the storage of many pre-computed coefficients. When
these are available evaluation of the asymptotic series near the turning point z = 1,
¢ = 0 is rather straightforward and efficient. One has to be sure whether for a given
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value of v and the required precision enough terms are available in the asymptotic
series. The accuracy in the evaluation of A,, By, C,, D, can be checked by using the
relation in (2.23).

In the second method of section 3 one needs only the storage of the coefficients
hy, of the Maclaurin series for 9; see (4.1) and (2.15). An algorithm based on this
method can reach any desired accuracy (already for moderate values of v), if enough
coefficients hy,, are available. The two components in the algorithm:

e the iteration of the pair of functions {Fi,, G} (see (4.4)),
e the backward recursion scheme for the coefficients f,, g, (see (4.2)),

are both numerically stable, and become more efficient as v increases. The computer
experiments shown in table 4 indicate that this method is very promising.

The methods of this paper can be used for Airy-type asymptotic expansions for
other special functions. We mention as interesting cases parabolic cylinder functions,
Coulomb wave functions, and other members of the class of Whittaker functions. To
stay in the class of Bessel functions, we mention the modified Bessel function of the
third kind K, (z) of imaginary order, which plays an important role in the diffraction
theory of pulses and in the study of certain hydrodynamical studies. Moreover, this
function is the kemel of the Lebedev transform. The same functions A,, B, Cy, D,
can be used for this case; see [3] for many details. It seems that there is no published
code for the numerical evaluation of the function Kj,(z) that covers the case of large
parameters.

It is of interest to compare the algorithms of Amos [2] and Matviyenko [5] with
our algorithms, but we expect to return to this in future publications, when we also
want to consider the modified Bessel functions with purely imaginary order (cf. also
[9], where contours of steepest descents are given for K, (z)).
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